Welcome
user_choices_background_image
Welcome
login container bottom
Search Library Catalog
Duplicate Items
Add to My List

Print
Request
Sorts and Limits


Title: Biomechanics of hard tissues : modeling, testing, and materials / edited by Andreas èOchsner, Waqar Ahmed.
Author: èOchsner, Andreas. ED.
Ahmed, Waqar. JT.ED.

General Notes: Includes bibliographical references and index.
Machine generated contents note: 1. Bone and Cartilage -- its Structure and Physical Properties / Ryszard Wojnar -- 1.1. Introduction -- 1.1.1. The Structure of Living Organisms -- 1.1.2. Growth of Living Organisms -- 1.1.2.1. Ring-Shaped Grain Boundary -- 1.1.3. Planarity of Biological Structures -- 1.2. Macroscopic Structure of the Bone -- 1.2.1. Growth of the Bone -- 1.2.2. Structure of the Body -- 1.2.3. Macroscopic Structure of Skeleton -- 1.2.4. Apatite in the Bone -- 1.2.5. Structure of the Bone -- 1.3. Microscopic Structure of the Bone -- 1.3.1. General -- 1.3.2. Osteon -- 1.3.3. Bone Innervation -- 1.3.3.1. Anatomy of Bone Innervation -- 1.3.4. Bone Cells -- 1.3.4.1. Cells -- 1.3.4.2. Cell Membrane -- 1.3.4.3. Membrane Transport -- 1.3.4.4. Bone Cell Types -- 1.3.4.5. Osteoclasts -- 1.3.5. Cellular Image -- OPG/RANK/RANKL Signaling System -- 1.3.5.1. Osteoprotegerin -- 1.3.5.2. RANK/RANKL -- 1.3.5.3. TACE -- 1.3.5.4. Bone Modeling and Remodeling -- 1.3.6. Proteins and Amino Acids
1.3.7. Collagen and its Properties -- 1.3.7.1. Molecular Structure -- 1.3.8. Geometry of Triple Helix -- 1.3.9. Polymer Thermodynamics -- 1.3.9.1. Thermodynamics -- 1.3.9.2. Ideal Chain -- 1.3.9.3. Wormlike Chain -- 1.3.9.4. Architecture of Biological Fibers -- 1.3.9.5. Architecture of Collagen Fibers in Human Osteon -- 1.3.9.6. Collagen Elasticity -- 1.4. Remarks and Conclusions -- 1.5. Comments -- 1.6. Acknowledgments -- References -- Further Reading -- 2. Numerical Simulation of Bone Remodeling Process Considering Interface Tissue Differentiation in Total Hip Replacements / Carlos R. M. Roesler -- 2.1. Introduction -- 2.2. Mechanical Adaptation of Bone -- 2.3. Constitutive Models -- 2.3.1. Bone Constitutive Model -- 2.3.2. Interface Constitutive Model -- 2.3.3. Model for Periprosthetic Adaptation -- 2.3.4. Model for Interfacial Adaptation -- 2.4. Numerical Examples -- 2.5. Final Remarks -- 2.6. Acknowledgments -- References -- 3. Bone as a Composite Material / Virginia L. Ferguson -- 3.1. Introduction -- 3.2. Bone Phases -- 3.2.1. Organic
3.2.2. Mineral -- 3.2.3. Physical Structure of Bone Material -- 3.2.4. Water -- 3.3. Bone Phase Material Properties -- 3.3.1. Organic Matrix -- 3.3.2. Mineral Phase -- 3.3.3. Water -- 3.3.4. Elastic Modulus of Composite Materials -- 3.4. Bone as a Composite: Macroscopic Effects -- 3.5. Bone as a Composite: Microscale Effects -- 3.6. Bone as a Composite: Anisotropy Effects -- 3.7. Bone as a Composite: Implications -- References -- 4. Mechanobiological Models for Bone Tissue. Applications to Implant Design / Manuel Doblare -- 4.1. Introduction -- 4.2. Biological and Mechanobiological Factors in Bone Remodeling and Bone Fracture Healing -- 4.2.1. Bone Remodeling -- 4.2.2. Bone Fracture Healing -- 4.3. Phenomenological Models of Bone Remodeling -- 4.4. Mechanistic Models of Bone Remodeling -- 4.5. Examples of Application of Bone Remodeling Models to Implant Design -- 4.6. Models of Tissue Differentiation. Application to Bone Fracture Healing -- 4.7. Mechanistic Models of Bone Fracture Healing -- 4.8. Examples of Application of Bone Fracture Healing Models to Implant Design
4.9. Concluding Remarks -- References -- 5. Biomechanical Testing of Orthopedic Implants; Aspects of Tribology and Simulation / Yoshitaka Nakanishi -- 5.1. Introduction -- 5.2. Tribological Testing of Orthopedic Implants -- 5.3. Tribological Testing of Tissue from a Living Body -- 5.4. Theoretical Analysis for Tribological Issues -- References -- 6. Constitutive Modeling of the Mechanical Behavior of Trabecular Bone -- Continuum Mechanical Approaches / Seyed Mohammad Hossein Hosseini -- 6.1. Introduction -- 6.2. Summary of Elasticity Theory and Continuum Mechanics -- 6.2.1. Stress Tensor and Decomposition -- 6.2.2. Invariants -- 6.3. Constitutive Equations -- 6.3.1. Linear Elastic Behavior: Generalized Hooke's Law for Isotropic Materials -- 6.3.2. Linear Elastic Behavior: Generalized Hooke's Law for Orthotopic Materials -- 6.3.3. Linear Elastic Behavior: Generalized Hooke's Law for Orthotropic Materials with Cubic Structure -- 6.3.4. Linear Elastic Behavior: Generalized Hooke's Law for Transverse Isotropic Materials -- 6.3.5. Plastic Behavior, Failure, and Limit Surface -- 6.4. The Structure of Trabecular Bone and Modeling Approaches
6.4.1. Structural Analogies: Cellular Plastics and Metals -- 6.5. Conclusions -- References -- 7. Mechanical and Magnetic Stimulation on Cells for Bone Regeneration / Kuo-Kang Liu -- 7.1. Introduction -- 7.2. Mechanical Stimulation on Cells -- 7.2.1. Various Mechanical Stimulations -- 7.2.2. Techniques for Applying Mechanical Loading -- 7.2.3. Mechanotransduction -- 7.2.4. Mechanical Influences on Stem Cell -- 7.3. Magnetic Stimulation on Cells -- 7.3.1. Magnetic Nanoparticles for Cell Stimulation -- 7.3.1.1. Properties of Magnetic Nanoparticles -- 7.3.1.2. Functionalization of Magnetic Nanoparticles -- 7.3.2. Magnetic Stimulation -- 7.3.2.1. Magnetic Pulling -- 7.3.2.2. Magnetic Twisting -- 7.3.3. Limitation of Using Magnetic Nanoparticles for Cell Stimulation -- 7.3.4. Magnetic Stimulation and Cell Conditioning for Tissue Regeneration -- 7.4. Summary -- References -- 8. Joint Replacement Implants / Duncan E. T. Shepherd -- 8.1. Introduction -- 8.2. Biomaterials for Joint Replacement Implants -- 8.3. Joint Replacement Implants for Weight-Bearing Joints -- 8.3.1. Introduction -- 8.3.2. Hip Joint Replacement
8.3.3. Knee Joint Replacement -- 8.3.4. Ankle Joint Replacement -- 8.3.5. Methods of Fixation for Weight-Bearing Joint Replacement Implants -- 8.4. Joint Replacement Implants for Joints of the Hand and Wrist -- 8.4.1. Introduction -- 8.4.2. Finger Joint Replacement -- 8.4.3. Wrist Joint Replacement -- 8.5. Design of Joint Replacement Implants -- 8.5.1. Introduction -- 8.5.2. Feasibility -- 8.5.3. Design -- 8.5.4. Verification -- 8.5.5. Manufacture -- 8.5.6. Validation -- 8.5.7. Design Transfer -- 8.5.8. Design Changes -- 8.6. Conclusions -- References -- 9. Interstitial Fluid Movement in Cortical Bone Tissue / Stephen C. Cowin -- 9.1. Introduction -- 9.2. Arterial Supply -- 9.2.1. Overview of the Arterial System in Bone -- 9.2.2. Dynamics of the Arterial System -- 9.2.3. Transcortical Arterial Hemodynamics -- 9.2.4. The Arterial System in Small Animals may be Different from that in Humans -- 9.3. Microvascular Network of the Medullary Canal -- 9.4. Microvascular Network of Cortical Bone -- 9.5. Venous Drainage of Bone -- 9.6. Bone Lymphatics and Blood Vessel Trans-Wall Transport
9.7. The Levels of Bone Porosity and their Bone Interfaces -- 9.7.1. The Vascular Porosity (PV) -- 9.7.2. The Lacunar-Canalicular Porosity (PLC) -- 9.7.3. The Collagen-Hydroxyapatite Porosity (PCA) -- 9.7.4. Cancellous Bone Porosity -- 9.7.5. The Interfaces between the Levels of Bone Porosity -- 9.8. Interstitial Fluid Flow -- 9.8.1. The Different Fluid Pressures in Long Bones (Blood Pressure, Interstitial Fluid Pressure, and Intramedullary Pressure) -- 9.8.2. Interstitial Flow and Mechanosensation -- 9.8.3. Electrokinetic Effects in Bone -- 9.8.4. The Poroelastic Model for the Cortical Bone -- 9.8.5. Interchange of Interstitial Fluid between the Vascular and Lacunar-Canalicular Porosities -- 9.8.6. Implications for the Determination of the Permeabilities -- References -- 10. Bone Implant Design Using Optimization Methods / Joao Folgado -- 10.1. Introduction -- 10.2. Optimization Methods for Implant Design -- 10.2.1. Cemented Stems -- 10.2.2. Uncemented Stems -- 10.3. Design Requirements for a Cementless Hip Stem -- 10.3.1. Implant Stability -- 10.3.2. Stress Shielding Effect
10.4. Multicriteria Formulation for Hip Stem Design -- 10.4.1. Design Variables and Geometry -- 10.4.2. Objective Function for Interface Displacement -- 10.4.3. Objective Function for Interface Stress -- 10.4.4. Objective Function for Bone Remodeling -- 10.4.5. Multicriteria Objective Function -- 10.5. Computational Model -- 10.5.1. Optimization Algorithm -- 10.5.2. Finite Element Model -- 10.6. Optimal Geometries Analysis -- 10.6.1. Optimal Geometry for Tangential Interfacial Displacement -- fd -- 10.6.2. Optimal Geometry for Normal Contact Stress -ft -- 10.6.3. Optimal Geometry for Remodeling -fr -- 10.6.4. Multicriteria Optimal Geometries -fmc -- 10.7. Long-Term Performance of Optimized Implants -- 10.8. Concluding Remarks -- References.

Publisher: Wiley-VCH,
Publication Place: Weinheim :
ISBN: 9783527324316 (hbk.)
3527324313 (hbk.)

Subject: Human mechanics.
Musculoskeletal system -- Mechanical properties.
Biomechanics.
Knochen
Knorpel
Physikalische Eigenschaft
Knochenersatz
Gelenkendoprothese
Biomechanik

Contents: Bone and Cartilage -- its Structure and Physical Properties / Introduction -- The Structure of Living Organisms -- Growth of Living Organisms -- Ring-Shaped Grain Boundary -- Planarity of Biological Structures -- Macroscopic Structure of the Bone -- Growth of the Bone -- Structure of the Body -- Macroscopic Structure of Skeleton -- Apatite in the Bone -- Structure of the Bone -- Microscopic Structure of the Bone -- General -- Osteon -- Bone Innervation -- Anatomy of Bone Innervation -- Bone Cells -- Cells -- Cell Membrane -- Membrane Transport -- Bone Cell Types -- Osteoclasts -- Cellular Image -- OPG/RANK/RANKL Signaling System -- Osteoprotegerin -- RANK/RANKL -- TACE -- Bone Modeling and Remodeling -- Proteins and Amino Acids
Collagen and its Properties -- Molecular Structure -- Geometry of Triple Helix -- Polymer Thermodynamics -- Thermodynamics -- Ideal Chain -- Wormlike Chain -- Architecture of Biological Fibers -- Architecture of Collagen Fibers in Human Osteon -- Collagen Elasticity -- Remarks and Conclusions -- Comments -- Acknowledgments -- References -- Further Reading -- Numerical Simulation of Bone Remodeling Process Considering Interface Tissue Differentiation in Total Hip Replacements / Introduction -- Mechanical Adaptation of Bone -- Constitutive Models -- Bone Constitutive Model -- Interface Constitutive Model -- Model for Periprosthetic Adaptation -- Model for Interfacial Adaptation -- Numerical Examples -- Final Remarks -- Acknowledgments -- References -- Bone as a Composite Material / Introduction -- Bone Phases -- Organic
Mineral -- Physical Structure of Bone Material -- Water -- Bone Phase Material Properties -- Organic Matrix -- Mineral Phase -- Water -- Elastic Modulus of Composite Materials -- Bone as a Composite: Macroscopic Effects -- Bone as a Composite: Microscale Effects -- Bone as a Composite: Anisotropy Effects -- Bone as a Composite: Implications -- References -- Mechanobiological Models for Bone Tissue. Applications to Implant Design / Introduction -- Biological and Mechanobiological Factors in Bone Remodeling and Bone Fracture Healing -- Bone Remodeling -- Bone Fracture Healing -- Phenomenological Models of Bone Remodeling -- Mechanistic Models of Bone Remodeling -- Examples of Application of Bone Remodeling Models to Implant Design -- Models of Tissue Differentiation. Application to Bone Fracture Healing -- Mechanistic Models of Bone Fracture Healing -- Examples of Application of Bone Fracture Healing Models to Implant Design
Concluding Remarks -- References -- Biomechanical Testing of Orthopedic Implants; Aspects of Tribology and Simulation / Introduction -- Tribological Testing of Orthopedic Implants -- Tribological Testing of Tissue from a Living Body -- Theoretical Analysis for Tribological Issues -- References -- Constitutive Modeling of the Mechanical Behavior of Trabecular Bone -- Continuum Mechanical Approaches / Introduction -- Summary of Elasticity Theory and Continuum Mechanics -- Stress Tensor and Decomposition -- Invariants -- Constitutive Equations -- Linear Elastic Behavior: Generalized Hooke's Law for Isotropic Materials -- Linear Elastic Behavior: Generalized Hooke's Law for Orthotopic Materials -- Linear Elastic Behavior: Generalized Hooke's Law for Orthotropic Materials with Cubic Structure -- Linear Elastic Behavior: Generalized Hooke's Law for Transverse Isotropic Materials -- Plastic Behavior, Failure, and Limit Surface -- The Structure of Trabecular Bone and Modeling Approaches
Structural Analogies: Cellular Plastics and Metals -- Conclusions -- References -- Mechanical and Magnetic Stimulation on Cells for Bone Regeneration / Introduction -- Mechanical Stimulation on Cells -- Various Mechanical Stimulations -- Techniques for Applying Mechanical Loading -- Mechanotransduction -- Mechanical Influences on Stem Cell -- Magnetic Stimulation on Cells -- Magnetic Nanoparticles for Cell Stimulation -- Properties of Magnetic Nanoparticles -- Functionalization of Magnetic Nanoparticles -- Magnetic Stimulation -- Magnetic Pulling -- Magnetic Twisting -- Limitation of Using Magnetic Nanoparticles for Cell Stimulation -- Magnetic Stimulation and Cell Conditioning for Tissue Regeneration -- Summary -- References -- Joint Replacement Implants / Introduction -- Biomaterials for Joint Replacement Implants -- Joint Replacement Implants for Weight-Bearing Joints -- Introduction -- Hip Joint Replacement
Knee Joint Replacement -- Ankle Joint Replacement -- Methods of Fixation for Weight-Bearing Joint Replacement Implants -- Joint Replacement Implants for Joints of the Hand and Wrist -- Introduction -- Finger Joint Replacement -- Wrist Joint Replacement -- Design of Joint Replacement Implants -- Introduction -- Feasibility -- Design -- Verification -- Manufacture -- Validation -- Design Transfer -- Design Changes -- Conclusions -- References -- Interstitial Fluid Movement in Cortical Bone Tissue / Introduction -- Arterial Supply -- Overview of the Arterial System in Bone -- Dynamics of the Arterial System -- Transcortical Arterial Hemodynamics -- The Arterial System in Small Animals may be Different from that in Humans -- Microvascular Network of the Medullary Canal -- Microvascular Network of Cortical Bone -- Venous Drainage of Bone -- Bone Lymphatics and Blood Vessel Trans-Wall Transport
The Levels of Bone Porosity and their Bone Interfaces -- The Vascular Porosity (PV) -- The Lacunar-Canalicular Porosity (PLC) -- The Collagen-Hydroxyapatite Porosity (PCA) -- Cancellous Bone Porosity -- The Interfaces between the Levels of Bone Porosity -- Interstitial Fluid Flow -- The Different Fluid Pressures in Long Bones (Blood Pressure, Interstitial Fluid Pressure, and Intramedullary Pressure) -- Interstitial Flow and Mechanosensation -- Electrokinetic Effects in Bone -- The Poroelastic Model for the Cortical Bone -- Interchange of Interstitial Fluid between the Vascular and Lacunar-Canalicular Porosities -- Implications for the Determination of the Permeabilities -- References -- Bone Implant Design Using Optimization Methods / Introduction -- Optimization Methods for Implant Design -- Cemented Stems -- Uncemented Stems -- Design Requirements for a Cementless Hip Stem -- Implant Stability -- Stress Shielding Effect
Multicriteria Formulation for Hip Stem Design -- Design Variables and Geometry -- Objective Function for Interface Displacement -- Objective Function for Interface Stress -- Objective Function for Bone Remodeling -- Multicriteria Objective Function -- Computational Model -- Optimization Algorithm -- Finite Element Model -- Optimal Geometries Analysis -- Optimal Geometry for Tangential Interfacial Displacement -- fd -- Optimal Geometry for Normal Contact Stress -ft -- Optimal Geometry for Remodeling -fr -- Multicriteria Optimal Geometries -fmc -- Long-Term Performance of Optimized Implants -- Concluding Remarks -- References.

Physical Description: xvi, 306 p. : ill. (some col.) ;
Formatted Contents Note: Machine generated contents note: 1. 1.1. 1.1.1. 1.1.2. 1.1.2.1. 1.1.3. 1.2. 1.2.1. 1.2.2. 1.2.3. 1.2.4. 1.2.5. 1.3. 1.3.1. 1.3.2. 1.3.3. 1.3.3.1. 1.3.4. 1.3.4.1. 1.3.4.2. 1.3.4.3. 1.3.4.4. 1.3.4.5. 1.3.5. 1.3.5.1. 1.3.5.2. 1.3.5.3. 1.3.5.4. 1.3.6.
1.3.7. 1.3.7.1. 1.3.8. 1.3.9. 1.3.9.1. 1.3.9.2. 1.3.9.3. 1.3.9.4. 1.3.9.5. 1.3.9.6. 1.4. 1.5. 1.6. 2. 2.1. 2.2. 2.3. 2.3.1. 2.3.2. 2.3.3. 2.3.4. 2.4. 2.5. 2.6. 3. 3.1. 3.2. 3.2.1.
3.2.2. 3.2.3. 3.2.4. 3.3. 3.3.1. 3.3.2. 3.3.3. 3.3.4. 3.4. 3.5. 3.6. 3.7. 4. 4.1. 4.2. 4.2.1. 4.2.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8.
4.9. 5. 5.1. 5.2. 5.3. 5.4. 6. 6.1. 6.2. 6.2.1. 6.2.2. 6.3. 6.3.1. 6.3.2. 6.3.3. 6.3.4. 6.3.5. 6.4.
6.4.1. 6.5. 7. 7.1. 7.2. 7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.3. 7.3.1. 7.3.1.1. 7.3.1.2. 7.3.2. 7.3.2.1. 7.3.2.2. 7.3.3. 7.3.4. 7.4. 8. 8.1. 8.2. 8.3. 8.3.1. 8.3.2.
8.3.3. 8.3.4. 8.3.5. 8.4. 8.4.1. 8.4.2. 8.4.3. 8.5. 8.5.1. 8.5.2. 8.5.3. 8.5.4. 8.5.5. 8.5.6. 8.5.7. 8.5.8. 8.6. 9. 9.1. 9.2. 9.2.1. 9.2.2. 9.2.3. 9.2.4. 9.3. 9.4. 9.5. 9.6.
9.7. 9.7.1. 9.7.2. 9.7.3. 9.7.4. 9.7.5. 9.8. 9.8.1. 9.8.2. 9.8.3. 9.8.4. 9.8.5. 9.8.6. 10. 10.1. 10.2. 10.2.1. 10.2.2. 10.3. 10.3.1. 10.3.2.
10.4. 10.4.1. 10.4.2. 10.4.3. 10.4.4. 10.4.5. 10.5. 10.5.1. 10.5.2. 10.6. 10.6.1. 10.6.2. 10.6.3. 10.6.4. 10.7. 10.8.

Electronic Location: http://d-nb.info/994010796/04
http://deposit.d-nb.de/cgi-bin/dokserv?id=3294486&prov=M&dok_var=1&dok_ext=htm

Publication Date: c2010.

Results 1 - 2 of 2
  Agency: Collection: Call No.: Item Type: Status: Copy: Barcode: Media Type:
Hashemite Main Library General 617.47 B 615 Normal Circulation Available 1 HU280245 Book
Hashemite Main Library General 617.47 B 615 Normal Circulation Available 2 HU280246 Book